Peri-exercise co-ingestion of branched-chain amino acids and carbohydrate in men does not preferentially augment resistance exercise-induced increases in PI3K/Akt-mTOR pathway markers indicative of muscle protein synthesis
نویسندگان
چکیده
The effects of a single bout of resistance exercise (RE) in conjunction with peri-exercise branched chain amino acid (BCAA) and carbohydrate (CHO) ingestion on skeletal muscle signaling markers indicative of muscle protein synthesis (MPS) were determined. It was hypothesized that CHO + BCAA would elicit a more profound effect on these signaling markers compared to CHO. Twenty-seven males were randomly assigned to CHO, CHO + BCAA, or placebo (PLC) groups. Four sets of leg presses and leg extensions were performed at 80% 1RM. Supplements were ingested 30 min and immediately prior to and after RE. Venous blood and muscle biopsy samples were obtained immediately prior to supplement ingestion and 0.5 hr, 2 hr, and 6 hr after RE. Serum insulin and glucose and phosphorylated levels of muscle insulin receptor substrate 1 (IRS1), protein kinase B (Akt), mammalian target of rapamycin (mTOR), p70S6 kinase (p70S6K), and 4E binding protein 1 (4E-BP1) were assessed. Data were analyzed by two-way repeated measures ANOVA. Significant group x time interactions were observed for glucose and insulin (p < 0.05) showing that CHO and CHO + BCAA were significantly greater than PLC. Significant time main effects were observed for IRS1 (p = 0.001), Akt (p = 0.031), mTOR (p = 0.003), and p70S6K (p = 0.001). CHO and CHO + BCAA supplementation significantly increased IRS-1 compared to PLC (p = 0.002). However, peri-exercise co-ingestion of CHO and BCAA did not augment RE-induced increases in skeletal muscle signaling markers indicative of MPS when compared to CHO.
منابع مشابه
Ingestion of 10 grams of whey protein prior to a single bout of resistance exercise does not augment Akt/mTOR pathway signaling compared to carbohydrate
BACKGROUND This study examined the effects of a whey protein supplement in conjunction with an acute bout of lower body resistance exercise, in recreationally-active males, on serum insulin and insulin like growth factor 1 (IGF-1) and Akt/mTOR signaling markers indicative of muscle protein synthesis: insulin receptor substrate 1 (IRS-1), AKT, mammalian target of rapamycin (mTOR), p70S6 kinase (...
متن کاملCo-ingestion of carbohydrate with leucine-enriched essential amino acids does not augment acute postexercise muscle protein synthesis in a strenuous exercise-induced hypoinsulinemic state
Strenuous exercise following overnight fasting increases fat oxidation during exercise, which can modulate training adaptation. However, such exercise induces muscle protein catabolism by decreasing blood insulin concentrations and increasing amino acid oxidation during the exercise. Leucine-enriched essential amino acids (LEAAs) enhance muscle protein synthesis (MPS) at rest and after exercise...
متن کاملLong-term feeding of whey protein hydrolysates increases skeletal muscle glycogen levels and improves exercise performance in mice
Background Recently, our studies have shown that co-ingestion of carbohydrate and whey protein hydrolysate (WPH) is more effective for increasing post-exercise skeletal muscle glycogen content than ingestion of other protein sources (whey protein, casein hydrolysate, or branched chain amino acids). We have also shown that chronic feeding of whey protein increases glycogen contents in skeletal m...
متن کاملThe anabolic hormone response to a lower-body resistance exercise bout in conjunction with oral BCAA supplementation
Background BCAAs (leucine, isoleucine, and valine), particularly leucine, activate key enzymes in protein synthesis after physical exercise. Research has demonstrated that BCAAs increase mTOR phosphorylation and activate p70 S6 kinase in human muscle via an Akt-independent pathway. The extent to which BCAAs influence the anabolic hormone response in conjunction with resistance exercise is not w...
متن کاملEupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway
Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014